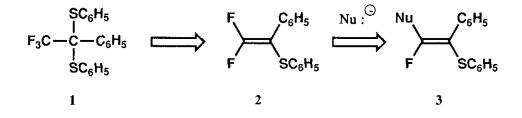
EXOCYCLIZATION OF NOVEL β,β-DIFLUORO-α-PHENYLVINYL SULFIDE WITH BIDENDATE HETEROATOM(N, O, S) NUCLEOPHILES


Bum Tae Kim,*^a Yong Ki Min,^a No Kyun Park,^a Kwang Yun Cho,^a and In Howa Jeong*^b

^aKorea Research Institute of Chemical Technology, Daejeon 305-606, Korea ^bDepartment of Chemistry, Yonsei University, Kangwon-do 222-701, Korea

Abstract-The exocyclization of novel β , β -difluoro- α -phenylvinyl sulfide with bidentate heteroatom (N, O, S) nucleophiles afforded various types of heterocyclic ketene acetals (O,O-, O,S-, S,S-, N,N-, N,O-, N,S-). The ease of exocyclization depended on the ring size of heterocyclic ketene acetals.

Recently, considerable effort has been paid to the synthesis of various types of heterocyclic N,N-,¹ S,S-,² and N,S-acetals,³ because these compounds are useful synthetic intermediates for the preparation of a wide variety of fused heterocycles. The general approach to synthesize those heterocyclic acetals was established by the reactions of α -oxoketene dithioacetals⁴ or electro-negatively substituted olefins such as 1,1-diiododinitroethylene⁵ with bidentate heteroatom (N, O, S) nucleophiles. Although a reaction of symmetrical *gem*-dichlorinated and *gem*-difluorinated ketene dithioacetals with only a bidentate sulfur nucleophile has been reported in recent years,² a reactivity study on the reaction of unsymmetrical *gem*-difluorinated vinyl sulfides ascribes to the lack of suitable methods for the preparation of unsymmetrical *gem*-difluorinated vinyl sulfides. Of particular interests in this unsymmetrical *gem*-difluorinated vinyl sulfides (2), because this sulfide (2) may have a unique reactivity toward ionic species to yield substitution product (3) *via* loss of fluoride and utilize to synthesis of a variety of heterocyclic acetals *via* exocyclization with bidentate heteroatom nucleophiles. Recently, we found that β , β -diffluoro- α -phenylvinyl sulfides heterocyclic and utilize to synthesis of a variety of heterocyclic acetals *via* exocyclization with bidentate heteroatom nucleophiles. Recently, we found that β , β -diffluoro- α -phenylvinyl sulfide heterocyclic acetals *via* exocyclization with bidentate heteroatom nucleophiles.

phenylvinyl sulfide (2) can be easily prepared from the reaction of 2,2,2-trifluoro-1,1-bis(phenylthio)ethylbenzene (1) with a mixture of 2 equiv. $TiCl_4$ and 4 equiv. $LiAlH_4$.⁶ In this communication, we wish to describe a reactivity on the exocyclization of 2 with various types of bidentate heteroatom (N,O,S) nucleophiles.

Treatment of 2 with dianionic sodium salts of 1,2-ethanediol, 2-mercaptoethanol, 1,2-ethanedithiol, and 2aminoethanethiol resulted in the formation of only heterocyclic ketene acetals (4a, 4b, 4c, and 4f) in good yields. Although two methylene protons of 4b and 4f were showen as one set of peaks in ¹H-nmr spectrum, it seems likely that 4b and 4f exist as a (E) and (Z) isomeric mixture, since it is very difficult to distinguish two methylene protons in (E) and (Z) isomers of 4b and 4f. In contrast, the similar reactions of 2 with dianionic sodium salts of ethylenediamine and 2-aminoethanol afforded only tautomers of heterocyclic ketene acetals (5d) and (5e) in good yields. In these cases, no corresponding heterocyclic ketene acetals was observed. The products (5d) and (5e) were confirmed by 1 H-nmr and ir spectra. The methine proton signals of 5d and 5e in ¹H-nmr spectrum were shown as a singlet peak at 5.20 and 5.05 ppm, respectively and an NH absorption peak was not detected in the ir spectrum. To support this spectroscopic analysis, the reaction of 4f and 5e with acetyl chloride in the presence of pyridine were performed. N-Acetylated product formed only from the reaction of 4f with acetyl chloride was obtained in quantative yield. This result indicates that only 4f contains NH functionality in the structure. Tautomerization of 4f, 5d, and 5e under basic condition was examined. When 4f, 5d, and 5e were reacted with sodium ethoxide in ethanol, however, tautomers of 4f, 5d, and 5e were not dected and only starting materials were recovered. This result implies that 4f, 5d, and 5e are very stable compounds even under basic condition. The use of longer chained alkanediols in the reaction of 2 with bidentate heteroatom nucleophiles caused to diminish the formation of heterocyclic ketene acetals (4), while monosubstituted vinyl sulfides (6) were obtained as major products. Therefore, the reaction of 2 with dianionic sodium salt of 1,4-butanediol afforded monosubstituted vinyl sulfide (6h) in 68% yield, while heterocyclic ketene acetals (4h) was obtained in only 5% yield.⁷ An attempt to cyclize the compound (6h) in the presence of 1 equiv. of NaH was performed. However, only trace amount of 4h was obtained, which indicates that it is

very difficult to prepare heterocyclic ketene acetals with more than six-membered ring *via* exocyclization of **2**. The reactions of **2** with bidentate heteroatom nucleophiles are summarized in Table I.

$F \xrightarrow{C_6H_5} SC_6H_5$		H_2 h_2 h_3 H_2 h_3 h_4 h_5	+ (CH ₂)n	C ₆ H ₅ HX(CF + SC ₆ H ₅	H₂)nY F SC ₆ H₅ SC ₆ H₅
2		4	5		6
X	Y	n	Pr	oducts(Yield, %)	a
			4	5	6
0	0	2	4a (82)	-	-
0	S	2	4b (88) ^b		-
S	S	2	4c (89)	-	-
N	NH	2	•	5d (87)	-
Ν	0	2	-	5e (85)	-
N	S	2	4f (86) ^b	-	-
0	0	3	4 g (77)	-	6g (12) ^b
0	0	4	4h (5)	-	6h (68) ^b
0	0	5	4i (3)	-	6i (72) ^b
0	0	6	4 j (2)	-	6j (77) ^ь
0	0	7	4k (trace)	-	6k (78) ^b

Table I. The Reaction of 2 with Dianionic Sodium Salts of Hetereoatom 1,n-Disubstituted Alkane

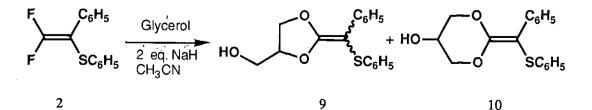
.

* All products were isolated by silica gel column chromatography.

^b All products are (E) and (Z) isomeric mixtures.

The reactions of 2 with dianionic sodium salts of catechol and 1,2-benzenedithiol yielded only the corresponding heterocyclic ketene acetals (7a) and (7b) in 82% and 80% yields, respectively. In contrast, when the compound (2) was treated with dianionic sodium salts of 2-aminophenol and 1,2-phenylenediamine, only tautomers of heterocyclic ketene acetals (8c) and (8d) were obtained in 68% and 72% yields, respectively.⁸

However, the treatment of 2 with dianionic sodium salt of 2-aminothiophenol resulted in the formation of a mixture of corresponding benzothiazolue (7e) and benzothiazole (8e) in 35% and 38% yields, respectively.⁹ This result is sharply contrast to that obtained from the reaction of 2 with dianionic sodium salt of 2-aminoethanethiol, in which only heterocyclic ketene acetal (4f) was obtained in 86% yield. The results are summarized in Table II. The partial formation of 8e can be rationalized by a better stability due to the conjugation effect than 7e.


Table II. The Reaction of 2 with Dianionic Sodium Salts of Heteroatom 1,2-Disubstituted Benzene

$F \qquad C_6H_5 \qquad F \qquad F \qquad SC_6H_5 \qquad F \qquad SC_6H_5$	CH ₃ CN	$- \qquad \qquad$		
2		7	8	
X	Y	Products (Yie	Products (Yield, %) ^a	
		7	8	
0	0	7a (82)	-	
S	S	7b (80)		
N	NH		8c (68)	
N	0		8d (72)	
N	S	7e (35) ^b	8e (38)	

* All products were isolated by silica gel column chromatography.

^b Products is (E) and (Z) isomeric mixture.

Exocyclization reaction of 2 with triol, such as glycerol, provided a mixture of 5-membered and 6-membered heterocyclic ketene acetals (9) and (10) (ratio = 1:1).¹⁰ No selectivity was found.

644

In a typical experiment, sodium hydride (2.2 mmol) and 2-aminoethanethiol (1.1 mmol) in dry CH₃CN (10 ml) were stirred at room temperature for 1 h under nitrogen atmosphere. β , β -Difluoro- α -phenylvinyl sulfide (2) (1.0 mmol) was added dropwise at room temperature and then stirred for further 2 h. The reaction mixture was poured into water (10 ml) and extracted with ethyl acetate (10 ml x 2). The ethyl acetate solution was dried and chromatographed on a SiO₂ column. Elution with a mixture of hexane and ethyl acetate (20:1) provided **4f** in 86% yield.

4f : colorless oil ; ¹H nmr (CDCl₃) δ 7.75-7.20 (m, 10H), 4.20 (t, J = 7.3 Hz, 2H), 3.60 (br s, 1H), 3.21(t, J = 7.3 Hz, 2H) ; ms, m/z (relative intensity) 285 (M⁺, 77), 176 (100), 167 (21), 148 (33), 84 (27) ; ir (neat) 3250, 3000, 1640 cm⁻¹. The product (**5d**) and (**5e**) was obtained in a same manner. **5d** : white solid ; mp 129-130 °C ; ¹H nmr (CDCl₃) δ 7.60-7.20 (m, 10H), 5.20 (s, 1H), 4.35 (br s, 1H), 3.67 (m, 4H) ; ms, m/z (relative intensity) 268 (M⁺, 100), 159 (7) ; ir (KBr) 3200, 3000, 1580 cm⁻¹. **5e** : white solid ; mp 31-33 °C ; ¹H nmr (CDCl₃) δ 7.70-7.20 (m, 10H), 5.05 (s, 1H), 4.25 (m, 2H), 3.95 (m, 2H) ; ms, m/z (relative intensity) 269 (M⁺, 44), 160 (48), 132(100), 117(27), 91(37) ; ir (KBr) 2900, 1650, 1160, 980 cm⁻¹.

ACKNOWLEDGEMENT

The authors thank the Korea Research Foundation and the Ministry of Science and Technology for financial support.

REFERENCES AND NOTES

- (a) Z. -T. Huang and H. Wamhoff, Chem. Ber., 1984, 117, 622; (b) Z. -T. Huang and H. Wamhoff, Chem. Ber., 1984, 117, 1926; (c) Z. -T. Huang and X. -J. Wang, Tetrahedron Lett., 1987, 28, 1527; (d) Z. -T. Huang and X. -J. Wang, Chem. Ber., 1987, 120, 1803; (e) Z. -T. Huang and Z. -R. Liu, Synthesis, 1987, 357; (f) Z. -T. Huang and Z. -R. Liu, Chem. Ber., 1989, 122, 95; (g) Z. -T. Huang and M. -X. Wang, J. Org. Chem., 1992, 57, 184.
- (a) M. Mizuno and M. P. Cava, J. Org. Chem., 1978, 43, 416; (b) Y. Gimbert and A. Moradpour, Tetrahedron Lett., 1991, 32, 4897; (c) Y. Gimbert, A. Moradpour, G. Dive, D. Dehareng, and K. Lahlil, J. Org. Chem., 1993, 58, 4685.
- (a) Z. -T. Huang and X. Shi, Chem. Ber., 1990, 123, 541; (b) Z. -T. Huang and X. Shi, Synthesis, 1990, 162.

- 4. D. Villemin and A. B. Alloum, Synthesis, 1991, 301.
- (a) K. Baum, S. S. Bigelow, N. V. Nguyen, and T. G. Archibald, J. Org. Chem., 1992, 57, 235; (b) N. V. Nguyen and K. Baum, Tetrahedron Lett., 1992, 33, 2949.
- 6. I. H. Jeong, Y. K. Min, Y. S. Kim, B. T. Kim, and K. Y. Cho, Tetraheron Lett., 1994, 35, 7783.
- 7. Spectroscopic data of 4h and 6h are as follows. 4h : white solid ; mp 64-65 °C ; ¹H nmr (CDCl₃) δ
 7.50-7.05 (m, 10H), 4.10 (m, 4H), 1.85 (m, 4H) ; ms, m/z (relative intensity) 298 (M⁺, 34), 199 (27), 166 (75), 161(66), 121(100), 105(78) ; ir (KBr) 2900, 1580, 1470, 1260, 1100 cm⁻¹. 6h : colorless oil ; ¹H nmr (CDCl₃) δ 7.60-7.10 (m, 10H), 4.15 (t, J = 6.3 Hz, 2H), 3.55 (t, J = 6.2 Hz, 2H), 1.75 (s, 1H), 1.70-1.40 (m, 4H) ; ms, m/z (relative intensity) 318 (M⁺, 35), 226 (97), 199 (96), 165 (100), 121 (98) ; ir (neat) 3300, 1465, 1425, 1060, 740 cm⁻¹.
- 8. Spectroscopic data of 8c and 8d are as follows. 8c : yellowish oil ; ¹H nmr (CDCl₃) δ 7.80-7.20 (m, 15H),
 6.00 (s, 1H) ; ms, m/z (relative intensity) 316 (M⁺, 100), 236 (25), 210 (63), 165 (32) ; ir (neat) 3250, 2900,
 1580, 1440, 1260 cm⁻¹. 8d : yellowish oil ; ¹H nmr (CDCl₃) δ 7.75-7.15 (m, 14H), 5.62 (s, 1H) ; ms,
 m/z (relative intensity) 317 (M⁺, 5), 209 (29), 208 (100), 180 (7) ; ir (neat) 3000, 1650, 1160, 980 cm⁻¹.
- 9. Spectroscopic data of 7e and 8e are as follows. 7e : yellowish oil ; ¹H nmr (CDCl₃) δ 11.50 (br s, 1H), 7.78-7.10 (m, 14H) ; ms, m/z (relative intensity) 333 (M⁺, 100), 240 (25), 165 (42) ; ir (neat) 3450, 1450, 1330, 1160, 720 cm⁻¹. 8e : yellowish solid ; mp 83-84 °C ; ¹H nmr (CDCl₃) δ 8.10-7.10 (m, 14H), 5.95 (s, 1H) ; ms, m/z (relative intensity) 333 (M⁺, 100), 240 (83), 165 (32) ; ir (KBr) 3000, 1580, 1495, 1150, 770 cm⁻¹.
- 10. Spectroscopic data of 9 and 10 are as follows. 9 : colorless oil ; ¹H nmr (CDCl₃) δ 7.80-7.05 (m, 10H), 5.10-4.70 (m, 1H), 4.60-4.20 (m, 2H), 3.90-3.60(m, 2H) ; ms, m/z (relative intensity) 300 (M*, 55), 199 (45), 165 (47), 121 (100) ; ir (neat) 3450, 1490, 1160, 760 cm⁻¹. 10 : colorless oil ; ¹H nmr (CDCl₃) δ 7.80-7.10 (m, 10H), 4.90-4.70 (m, 1H), 4.50-4.10 (m, 4H) ; ms, m/z (relative intensity) 300 (M*, 35), 199 (100), 165 (15), 121 (21) ; ir (neat) 3450, 1580, 1450, 750, 700 cm⁻¹.

Received, 1st November, 1994